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We study anomalous elasticity in the tubule phases of nematic and smectic elastomer membranes, which are
flat in one direction and crumpled in another. These phases share the same macroscopic symmetry properties
including spontaneously broken in-plane isotropy and hence belong to the same universality class. Below an
upper critical value Dc=3 of the membranes’ intrinsic dimension D, thermal fluctuations renormalize the
elasticity with respect to elastic displacements along the tubule axis so that elastic moduli for compression
along the tubule axis and for bending the tubule axis become length-scale dependent. This anomalous elasticity
belongs to the same universality class as that of d-dimensional conventional smectic liquid crystals with D
taking on the role of d. For physical tubule phases, D=2, this anomaly is of power-law type and thus might by
easier to detect experimentally than the logarithmic anomaly in conventional smectics.
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Liquid crystal elastomers �1� are unique materials that
combine the rubber elasticity of polymer networks with the
orientational properties and rich phase behavior of liquid
crystals �2� which includes nematic, smectic-A �SmA�, and
smectic-C �SmC� phases. Elaborate cross-linking techniques
have been developed to synthesize monodomain samples of
nematic �3� and smectic �4� elastomers. With these tech-
niques, one can efficiently produce from small amounts of
material samples in the form of thin films or membranes. For
example, smectic elastomer films have been produced as thin
as 75 nm �5�. Experiments on such films include measure-
ments of the electroclinic effect in flat films �5,6� and mea-
surements of elastic constants of films that have been inflated
to spherical bubbles �7�. The potential of liquid crystal elas-
tomer membranes for further experimental realizations ap-
pears promising and calls for a deepening of their theoretical
understanding.

Isotropic polymerized membranes have been extensively
studied over the past two decades �8�. For example, it is well
established that a flat phase with long-range orientational
order in the local membrane normal is favored at low tem-
perature over a crumpled phase which is entropically pre-
ferred at high temperature. More recently, it has been discov-
ered that permanent in-plane anisotropy modifies the phase
diagram �9,10�; it leads to intermediate phases between the
usual flat and crumpled phases, so-called tubule phases,
which are extended in one direction and crumpled in another.
Very recently, liquid crystal elastomer membranes �see Fig. 1
for cartoons� have gained some interest �11–13�, in part be-
cause of their potential to realize anisotropic membranes ex-
perimentally. However, their mesogenic component not only
allows for anisotropy, it also allows for a spontaneous devel-
opment thereof. This unique feature sets them apart from
permanently anisotropic membranes and provides for a num-
ber of interesting phenomena. Compared to permanently an-
isotropic membranes, their phase diagrams are richer, at least
if one assumes, as we do, idealized crosslinking that avoids
locking-in permanent anisotropy. The mean-field phase dia-
grams of nematic �12� and smectic �13� elastomer mem-
branes each feature five phases, namely, isotropic-flat,
isotropic-crumpled, nematic-flat, nematic-crumpled, and
nematic-tubule for the former, and SmA-flat, SmC-crumpled,

SmC-flat, SmC-crumpled, and SmC-tubule for the latter. Be-
cause of spontaneous breaking of in-plane isotropy, the
nematic-flat, nematic-tubule, SmC-flat, and SmC-tubule
phases exhibit soft elasticity, i.e., certain elastic moduli van-
ish as mandated by the Goldstone theorem, that is qualita-
tively distinct from the elasticity of the flat and tubule phases
of permanently anisotropic membranes.

In this paper, we study the effects of thermal fluctuations
on the elasticity of the tubule phases of nematic and smectic
elastomer membranes. These phases share the same macro-
scopic symmetries including spontaneously broken in-plane
isotropy and the resulting softness and hence belong to the
same universality class. Typically, fluctuation effects are
strong in soft phases because fluctuations drive elastic non-
linearities, which are often negligible in systems without soft
elasticity, to qualitatively modify the elasticity through a
Grinstein-Pelcovits- �GP-� type renormalization �14�. As a
consequence of this renormalization, the elasticity becomes
anomalous with length-scale dependent elastic constants. We
explore this anomalous elasticity of nematic and smectic
elastomer tubule by using renormalized field theory �15�.

Physical membranes are generically two-dimensional
manifolds embedded in three-dimensional space. In the fol-
lowing, to facilitate field theory, we consider generalizations
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FIG. 1. Cartoons of elastomer membranes in the �a� SmC-flat,
�b� nematic-flat, and �c� nematic-or SmC-tubule phase. In �a�, the
thickness of the membrane is vastly exaggerated to allow for a
depiction of the mesogens and the arrows symbolize the c director,
i.e., the components of the Frank director perpendicular to the local
membrane normal. In �c�, the arrows symbolize ambiguously the c
director or the director depending on whether the membrane is
smectic or nematic.
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to D-dimensional manifolds in d-dimensional space. For
simplicity, we ignore the effects of self-avoidence and het-
erogeneities such as random stresses. We employ the frame-
work of Lagrange elasticity theory �16,17�. We label mass
points in the undeformed membrane by a reference space
vector x= �x1 , . . . ,xD�. We denote the position in target space

of the mass point with intrinsic coordinate x by R� �x�
= (R1�x� , . . . ,Rd�x�), and label the corresponding coordinates
with indices from the middle of the alphabet, i , j=1, . . . ,d.
To keep our discussion as simple as possible, we use ortho-
normal target space basis vectors êi with components êi,j
=�ij satisfying êi · êj =�ij and choose the reference space basis
vectors to form a subset of the set �êi� as we can, because the
reference space can be viewed as a subspace of the target
space.

Physical nematic and smectic tubule phases are character-
ized by an equilibrium metric tensor with one positive eigen-
value, say �2, and one vanishing eigenvalue �12,13�. To fa-
cilitate field theory, we consider in the following the more
general case that there are �D−1� vanishing eigenvalues in-
stead �18�. Choosing our basis so that êx� ê1 is along the
eigenvector associated with �2 �which is in the direction of
the nematic or c director, respectively�, we can represent the

reference conformation of the tubule as R� 0�x�=�xêx. We la-
bel the components of x in the reference-space directions
perpendicular to êx with indices from the Greek alphabet,
� ,�=2, . . . ,D. Unless stated otherwise, the summation con-
vention on repeated reference and the target space indices is
understood. To describe distortions, we use a one-
dimensional elastic displacement field u�x� and a

�d−1�-dimensional height field h��x� which is perpendicular
to the tubule’s axis êx. With this parametrization, the target
space coordinate of the mass point x after distortion becomes

R� �x� = ��x + u�x��êx + h��x� . �1�

The corresponding metric tensor g
=

has the components

gxx = �2 + 2uxx, gx� = 2ux�, g�� = 2u��, �2�

with the components of the strain tensor u= given by

uxx =
1

2
�2��xu + ��xu�2 + �xh� · �xh�� , �3a�

ux� =
1

2
��� + �xu���u + �xh� · ��h�� , �3b�

u�� =
1

2
���u��u + ��h� · ��h�� . �3c�

There are various possibilities to set up elastic energy
densities for liquid crystal elastomer membranes including
formulations which account for liquid crystalline degrees of
freedom explicitly �12,13�. For our purposes, the most eco-
nomical one is an effective formulation in terms of elastic
degrees of freedom only. As a starting point for our theory,
we use the well established stretching energy density for iso-

tropic polymerized membranes �19� which we augment with
higher-order terms to ensure mechanical stability under the
development of a tubule phase

f = ttr g
=

+
1

2
Btr2 g

=
+ �tr g

=

2 − C trg
=
tr g
=

2 + Etr2 g
=

2, �4�

where t is a strongly temperature-dependent parameter, B
and � are Lamé coefficients, and C and E are higher-order
expansion coefficients. In Eq. �4�, we omit terms beyond
fourth order that are irrelevant for our purposes and we dis-
regard third and fourth order terms such as tr3 g

=
and tr4 g

=

whose inclusion does not change our findings qualitatively.
Next, we expand Eq. �4� about the equilibrium metric tensor
describing an undistorted tubulus. Dropping inconsequential
constant terms we obtain

f = a1uxx + a2u�� + b1uxx
2 + b2uxxu�� + b3u��

2 + b4�u��
2 + 2ux�

2 �

− 8Ctr u= tr u=2 + 32�2Euxx tr u=2 + 16E tr2 u=2. �5�

The elastic constants featured in Eq. �5� are conglomerates of
the original elastic constants featured in Eq. �4� and powers
of �. They are not independent; they obey the relations

a1 − a2 − �2b4 = 0, b2 − 2b3 + 8�2C = 0, �6a�

b1 − b2 + b3 − b4 − 16�4E = 0. �6b�

Because uxx describes deviations of gxx from its equilibrium
value �2, the coefficient a1 of the term linear in uxx must
vanish. Exploiting the Ward identities �6� and setting a1=0,
we can recast the elastic energy density as

f = b1wxx
2 + b2wxxw�� + b3w��

2 + b4�− �2u�� + u��
2

+ 2ux�
2 − 2�−2uxx tr u=2 − �−4uxx tr2 u=2� , �7�

where we have introduced the composite strains

wxx = uxx + �−2 tr u=2, w�� = u�� − �−2 tr u=2. �8�

The b4 term and w�� are of a peculiar structure such that
multiple cancellations occur once we express f in terms of u

and h� via Eq. �3�,

wxx = ��xu +
1

2
���u�2 + irrelevant, �9a�

w�� = 0 + irrelevant, �9b�

b4 term = −
1

2
b4�2��h� · ��h� + irrelevant, �9c�

where we, anticipating results of power-counting arguments
to be presented below, dropped all terms that turn out being
irrelevant in the sense of the renormalization group �RG�.
Note that among the various relevant contributions to the b4
term that cancel, are the contributions quadratic in ��u, and
thus the tubules are soft with respect to ��u deformations. In
order to proceed toward the desired field theoretic Hamil-
tonian, we insert Eq. �9� into the elastic energy density �7�
and we rescale x→�x. Then we add bending terms as man-
dated by mechanical stability and finally integrate over the
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reference space coordinate x to switch from the elastic en-
ergy density. These steps result in

H
T

=
1

2T
� dD−1x�� dx	Bu
�xu +

1

2
���u�2�2

+ Bh��h� · ��h� + Ku���
2u�2 + Kh�x

2h� · �x
2h�� , �10�

where Bu=2b1, Bh=−��2 /2�b4 and where Ku and Kh are
bending moduli. When expressed in terms of the original
elastic constants and �, Bh reads Bh=4�4�C−�2E−� /�2�. For
mechanical stability, Bh must be positive implying that C has
to satisfy C��2E+� /�2.

At this point it is worthwhile to discuss the rotational
symmetries of the Hamiltonian �10� briefly. As is the case for
any elastic medium, the elastic energy describing our tubule
must be invariant under global rotations in target space.
Moreover, because we are interested in tubules that emerge
from a phase with no in-plane anisotropy via spontaneous
symmetry breaking, our elastic energy must also be invariant
under global rotations in reference space. However, because
we neglect irrelevant terms, H can satisfy these symmetries
at best for small rotation angles, and indeed it does, as can be
checked straightforwardly, e.g., by rotating the reference and
target space bases using appropriate rotation matrixes.

Next, we turn to the aforementioned power-counting
analysis to assess the relevance of the various terms in the
sense of the RG. To have some guidance in the analysis, we
first consider the mean square fluctuations of the displace-
ment and height fields in real space in the harmonic approxi-
mation. The Hamiltonian �10� implies that the Gaussian
propagators of these fields are given in momentum or wave-
vector space by

Gu�q� =
T

Buqx
2 + Kuq�

4 , Gh,ij�q� =
T�ij

Bhq�
2 + Khqx

4 , �11�

with q�
2 =q�

2 and where it is understood that i and j run over
the subspace of the target space that is perpendicular to the
tubule’s axis êx. Calculating the Gaussian fluctuations of the
displacement field in real space by Fourier-transforming
Gu�q�, we find u�x�u�x���L�

3−D, where L� is the length of
the tubule in any of its directions perpendicular êx were it to
be flattened out. Thus, in the harmonic approximation, the u
fluctuations diverge in the infrared for D	3. For the height

field, on the other hand, we have h��x� ·h��x���L�
5/2−D, which

diverges in the infrared for D	5 /2. Thus, if we decrease D
from a high value where the mean field approximation is
exact to lower dimensions, infrared divergences start to oc-
cur at D=3, which signals that Dc=3 is the upper critical
dimension. This observation in conjunction with an inspec-
tion of Gu also signals that in our power-counting analysis
we should count each power of qx as two powers of q�. Note
in comparison, that tubules in permanently anisotropic mem-
branes do not feature the soft elasticity with respect to ��u
deformations, and that their u propagator is thus qualitatively
different from that given in Eq. �11� in that it carries a q�

2

instead of the q�
4 �9�. As a consequence, the real-space

Gaussian fluctuations in the latter become divergent in the

infrared in D	2 rather than in D	3 leading to an upper
critical dimension Dc=5 /2 rather than Dc=3. As far as the
lower critical dimension Dlc is concerned, i.e., the dimension
below which the membrane is inevitably crumpled, inspec-

tion of harmonic fluctuations �xh��x� ·�xh��x���L�
3/2−D of the

tubule normal along êx indicates that Dlc=3 /2.
Now, we determine which terms are relevant in the sense

of the RG by rescaling our coordinates such that the resulting
coordinates are dimensionless: x→�−2x and x�→�−1x�,
where � is an inverse length scale that must not be confused
with the Lamé coefficient encountered earlier. Under this res-
caling, the Hamiltonian �10� remains invariant in form pro-

vided that h� →�h� , T→�3−DT and Kh→�−6Kh. This means

that h� , T, and Kh have the naive or engineering dimensions 1,

�3−D, and −6, respectively. The field u and the remaining
parameters in Eq. �10� have a vanishing naive dimension.
Above D=3, the naive dimension of the temperature T is
negative implying that T is irrelevant above D=3. This sig-
nals that Dc=3 is the upper critical dimension in accord with
what we have seen above. The Hamiltonian �10� contains all
relevant terms. In addition, it contains the Kh term although
Kh has a negative naive dimension. Dropping the Kh term,

would make the h� propagator independent of qx which is
unphysical, i.e., Kh is a dangerous irrelevant coupling con-
stant that must be kept.

The Hamiltonian �10� has the remarkable feature that
there are no relevant contributions that couple the displace-
ment and the height field. Thus, it decomposes into a part

that depends only on u and a part that depends only h� . The h�

part is purely harmonic. Therefore, there is no anomalous

elasticity with respect to h� in the vicinity of Dc. The u part is
equivalent to the Landau-Peierls Hamiltonian as studied by
GP with d replaced by D. Consequently, there is anomalous
elasticity with respect to u and this anomalous elasticity be-
longs to the GP universality class with D taking on the role
of d. For bulk smectics as studied by GP, the physical and the
upper critical dimensions coincide, and hence the compres-
sion and bending moduli Bu and Ku depend logarithmically
on wave vectors. For our tubule, however, the physical case
is D=2	Dc, and hence Bu and Ku have power-law behavior

Bu�q� = qx
�BSB�qx/�q��z� , �12a�

Ku�q� = qx
�KSK�qx/�q��z� , �12b�

with critical exponents given to one-loop order by �B= 2
5
,

�K=− 1
5
, and z=2− 3

5
 �
=1 corresponds to the physical
case�. SB and SK are scaling functions with the asymptotic
properties SB�y��SB�y��const for y→� and SB�y��y−�B

and SK�y��y−�K for y→0. The signs of �B and �K imply
that Bu and Ku, respectively, vanish and diverge at long
length scales. Thus, just as the interplay of thermal fluctua-
tions and elastic nonlinearities stabilizes the flat phase in
isotropic polymerized membranes �20�, it here stabilizes the
tubule phases through infinitely enhancing the bending
modulus Ku at long length scales.

An important question is whether our results remain valid
for D5 /2. On one hand, Gaussian theory indicates that
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fluctuations of h� become divergent in these dimensions. On
the other hand, it is entirely possible that the system is deep
enough in the interacting regime for D�5 /2 that the Gauss-
ian fixed point of the RG has lost its significance and that,
hence, the true lower critical dimension for h� may be con-
siderably smaller than indicated by Gaussian theory. A simi-
lar problem arises, e.g., in the dynamics of ferromagnets
�21�, where the upper critical dimension is 6, and, though the
upper critical dimension for corresponding statics is 4, it is
generally believed that the dynamical field theory remains
useful down to the physical dimension 3. To settle this ques-
tion definitely for the tubule, one has to devise a RG study

that reliably treats both u and h� below D=5 /2, which we

leave for future work. We hope that our work stimulates
further experimental and theoretical interest in liquid crystal
elastomer membranes and their tubule phases. It would be
interesting to see measurements of their elastic moduli, e.g.,
by light scattering, sound or stress-strain experiments. Be-
cause the dependence of Bu and Ku on wave vectors is of
power-law type rather than logarithmic, their anomalous
elasticity might be easier to detect than that of conventional
smectics.
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